FastFind »   Lastname: doi:10.1029/ Year: Advanced Search  

Geophysical Monograph Series

 

Keywords

  • Deepwater Horizon oil spill
  • BP oil spill motion
  • Loop Current circulation
  • Loop Current frontal eddies
  • satellite tracking of oil
  • cyclone merger

Index Terms

  • 4520 Oceanography: Physical: Eddies and mesoscale processes
  • 4512 Oceanography: Physical: Currents
  • 4275 Oceanography: General: Remote sensing and electromagnetic processes
  • 4528 Oceanography: Physical: Fronts and jets

Article

GEOPHYSICAL MONOGRAPH SERIES, VOL. 195, PP. 103-116, 2011

Impacts of Loop Current Frontal Cyclonic Eddies and Wind Forcing on the 2010 Gulf of Mexico Oil Spill

N. D. Walker, C. T. Pilley, V. V. Raghunathan, E. J. D'Sa, R. R. Leben, N. G. Hoffmann, P. J. Brickley, P. D. Coholan, N. Sharma, H. C. Graber, and R. E. Turner

The 2010 Deepwater Horizon Gulf of Mexico oil spill, the largest in U.S. history, highlights the environmental risks inherent in deepwater drilling. These risks were mitigated by rapid access to real-time satellite measurements from passive (optical, IR) and active (synthetic aperture radar, altimetry) sensors. This study employed satellite data, in tandem with in situ current and wind measurements, to track surface oil and to better understand the causes for observed large-scale motions during the 84 day episode. The analysis revealed the merger of three cyclonic eddies along the Loop Current's (LC's) northern margin, ultimately forming a larger and more vigorous cyclonic eddy, measuring 280 × 130 km on 18 May. This larger cyclonic eddy, in tandem with a smaller anticyclonic eddy and a LC meander, controlled the motion of the oil/dispersant mixture into deepwater (maximum current speed of 2.25 m s−1), tripling the area of surface oiling from 9623 to 33,575 km2. Two main events limited the flow of oil to the Florida Straits, the accumulation of oil within the merged eddy and the fact that this eddy did not move substantially for several months. The observed offshore entrainment of oil toward the LC was successfully hindcast using a particle-tracking model based on geostrophic currents computed from satellite altimetry. This assessment of circulation processes may help to advance numerical circulation modeling efforts in this region of rapid current variability in support of safer deepwater drilling in the northern Gulf.

Citation: Walker, N. D., et al. (2011), Impacts of Loop Current frontal cyclonic eddies and wind forcing on the 2010 Gulf of Mexico oil spill, in Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr. Ser., vol. 195, edited by Y. Liu et al., pp. 103–116, AGU, Washington, D. C., doi:10.1029/2011GM001120.

Cited By

Please wait one moment ...