

# Introduction

At subduction zones, earthquakes occur from the surface to nearly 700 km depth in the subducting slab. Greater than 60 km depth, earthquakes occur where temperature and pressure conditions should prevent brittle fracture, suggesting a different mechanism is responsible for the deep earthquakes than for the shallow earthquakes. At all depths, earthquakes appear to have predominantly double-couple radiation patterns and similar rupture velocities, source-time histories, and magnitude-frequency distributions [Frohlich, 2006].

One suggested difference between deep and shallow earthquakes is the aftershock productivity: deep earthquakes have fewer observed aftershocks than shallow earthquakes. Previous observations of deep aftershock sequences suggest that:

(1) The magnitude differential  $\Delta M$  between the mainshock and the largest aftershock is ~2 [Wiens et al., 1997]. For shallow earthquakes,  $\Delta M$  is ~1. (2) Earthquakes in cold slabs have more aftershocks than earthquakes in warm slabs [Wiens & Gilbert, 1996].

Since deep earthquake aftershock sequences have been more readily observed in cold subduction zones and in regions with an earthquake catalog with a low magnitude of completeness M<sub>c</sub>, we study intermediate-depth aftershock sequences beneath Japan. In characterizing these earthquakes, we address these questions:

- Do all intermediate-depth earthquakes have aftershocks?
- What is the magnitude differential between the mainshock and the largest aftershock?
- When does a region return to the background seismicity level?

# **Study Area and Data Set**

The Japan subduction zone is relatively cold: the Pacific Plate is 115-130 Ma [Müller et al., 2008] and subducting at 8-9 cm/yr [Argus et al., 2006]. Earthquakes in this region are detected by Japan's dense seismic networks and catalogued. The Japan Meteorological Agency (JMA) unified earthquake catalog, which we acquired from the International Seismological Centre (ISC), has a magnitude of completeness  $M_{c}$  of ~1 beneath the land areas. For our analysis, we use the JMA catalog from May 2002 through February 2016 and select the 14 earthquakes with local magnitude  $M_{\downarrow} \ge 5.7$  that occurred at depths of 70-305 km for further analysis.





What is an Aftershock? Earthquakes occur relatively randomly in space and time. As a result, the cumulative number of earthquakes increases linearly with time and the rate of earthquakes is constant.



Aftershocks, as shown by the light blue symbols, are spatially and temporally close to a large earthquake but have smaller magnitudes than the mainshock. The maximum magnitude of aftershocks decreases with time. The number of aftershocks increases immediately after the mainshock and decreases exponentially with time, eventually returning to the background rate.



# Aftershock Sequences of Intermediate-depth Earthquakes Beneath Japan Cara M. Baez (cara.baez@slu.edu) and Linda M. Warren, Department of Earth and Atmospheric Sciences, Saint Louis University

### **Observed Aftershock Sequences**

| Event<br>ID | Date              | Depth<br>(km) | MJ  | Max<br>M <sub>after</sub> | ΔΜ  |
|-------------|-------------------|---------------|-----|---------------------------|-----|
|             |                   |               |     | anter                     |     |
| A           | 26 May 2003       | 71.2          | 7.1 | 4.7                       | 2.4 |
| В           | 3 July 2008       | 113.1         | 6.8 | 4.8                       | 2.0 |
| С           | 9 August 2009     | 302.2         | 6.8 | 4.8                       | 2.0 |
| D           | 2 February 2013   | 105.0         | 6.5 | 3.5                       | 3.0 |
| Е           | 21 October 2011   | 189.0         | 6.3 | 2.7                       | 3.6 |
| F           | 11 January 2016   | 245.0         | 6.2 | 2.5                       | 3.7 |
| G           | 21 September 2005 | 102.2         | 6.0 | 2.9                       | 3.1 |
| н           | 16 April 2011     | 78.1          | 5.9 | 5.0                       | 0.9 |
| J           | 19 February 2003  | 218.9         | 5.9 | 2.9                       | 3.0 |
| К           | 1 July 2007       | 131.7         | 5.8 | 3.7                       | 2.1 |
| L           | 16 April 2008     | 167.7         | 5.8 | 2.1                       | 3.7 |
| М           | 9 July 2015       | 81.0          | 5.7 | 3.0                       | 2.7 |
| Ν           | 21 May 2002       | 148.1         | 5.7 | 2.6                       | 3.1 |
| 0           | 4 June 2008       | 210.1         | 5.7 | 2.7                       | 3.0 |

We observe productive aftershock sequences for 7 earthquakes  $\bigstar$  and few aftershocks for 7 earthquakes  $\bigstar$ . To show both types of events, we present Event A, the 2003 Miyagi earthquake which has a productive aftershock sequence, and Event K, the 2007 Hokkaido earthquake which has few observed aftershocks. Earthquakes with observed aftershocks tend to have large magnitudes and low M<sub>c</sub> whereas earthquakes with few observed aftershocks tend to have smaller differences between the mainshock magnitude and the M<sub>c</sub>.

# **Properties of Aftershock Sequences**

#### Magnitude Differential

For earthquakes with observable aftershocks, the magnitude differential  $\Delta M$  between the mainshock and the largest aftershock ranges from 0.9-3.7. However, only one earthquake has  $\Delta M < 2.0$  and that earthquake, with a depth of 78 km, was one of the shallowest ones analyzed. Previous observations have suggested that deep earthquakes have a  $\Delta M$  of ~2 and our observations show that typical values may be even higher. Thus, intermediate-depth earthquakes appear to have a larger  $\Delta M$ than shallow earthquakes, which have a value of  $\sim 1$ .

#### Aftershock decay

The rate of aftershocks is often described by the modified Omori's Law,  $dN/dt = k/(t+c)^p$ , where N is the number of earthquakes, t is time, k is a constant, c is the duration of the incomplete catalog, and p is the decay rate. As shown below, the analyzed aftershock sequences have a linear decrease in the number of earthquakes with time on a log-log plot and are well fit by the modified Omori's Law. For most earthquakes with observed aftershocks, the decay rate has a p value of  $\sim 1$ , similar to the value for aftershock sequences of shallow earthquakes.

2.5 2.2 2.0 1.6



**Time Progression**. For the aftershock Aftershock Volume. To identify the aftershock region, we plot the distribution of volume, we plot the cumulative number of earthquakes for different time periods (before earthquakes, earthquake rate, and the mainshock, 0-2 days after the mainshock, magnitudes of all earthquakes for the entire and 2-30 days after the mainshock) in map time period. and cross-section views. We manually extract a volume that contains the mainshock and aftershocks.







1 month after mainshock

Background seismicity 1 month after mainshock >1 year after mainshock









# Conclusions

• The low magnitude of completeness of the JMA catalog allows us to observe productive aftershock sequences for 7 intermediate-depth earthquakes.

• The magnitude differential between the main shock and the largest aftershock ranges from 0.9-3.7. For most earthquakes the magnitude differential is >2, which is larger than for shallow earthquakes. • The decay in the rate of aftershocks with time can be fit with a modified Omori's Law p-value of ~1, similar to the decay rate for shallow earthquakes.

# References

Argus, D. F., R. G. Gordon, M. B. Heflin, C. Ma, R. J. Eanes, P. Willis, W. R. Peltier, and S. E. Owen (2010). The angular velocities of the plates and the velocity of the Earth's centre from space geodesy. Geophys. J. Int., 18, 1-48.

Frohlich, C. (2006). Deep Earthquakes. Cambridge University Press.

Hayes, G., 2018, Slab2 - A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release, https://doi.org/10.5066/F7PV6JNV.

International Seismological Centre (2016). On-line Bulletin, http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom.

Müller, R. D., M. Sdrolias, C. Gaina, and W. R. Roest (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem. Geophys. Geosyst., 9, Q04006. Wiens, D. A., & Gilbert, H. J. (1996). Effect of slab temperature on deep-earthquake aftershock

productivity and magnitude-frequency relations. Nature, 384, 153-156. Wiens, D. A., Gilbert, H. J., Hicks, B., Wysession, M. E., & Shore, P. J. (1997). Aftershock

sequences of moderate-sized intermediate and deep earthquakes in the Tonga subduction zone. Geophysical Research Letters, 24, 2059-2062.

# Acknowledgements

We used the JMA earthquake catalog acquired from the ISC. C.M.B. received support from the Knoedler Undergraduate Research Fund at Saint Louis University.