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Introduction
Ventilation of the subtropical North Atlantic ocean plays a critical role 
in climate by setting the properties of the ocean interior, including the 
rate of uptake of heat and carbon. Traditionally, the time-mean gyre 
circulation has been considered to dominate the ventilation process, 
such that water flows along time-mean, laminar streamlines into the 
ocean interior (Figure 1). However, the turbulent nature of the time-
varying ocean circulation, manifest in a vigorous mesoscale eddy field, 
is likely to complicate the pathways along which water is transported. 
The purpose of this work is to quantify the chaotic nature of ventilation 
pathways in the subtropical ocean, challenging the existing paradigm 
of laminar ventilation.
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Summary
> A filamentation number (the ratio of ventilation and strain timescales) 

indicates the chaotic nature of ventilation pathways, and is found to be large 

across two density surfaces in the subtropical North Atlantic thermocline, 

particularly at depth.

> Mapping confirms the chaotic nature of ventilation pathways, with 

adjacent particles ventilated decades apart. The mapping also shows the 

stirring of fluid by mesoscale eddies.
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Box A1: Strain
The impact of nonlinear flow on a patch of fluid is quantified by the 
strain. At a stagnation point in a two-dimensional, non-divergent flow, 
a rectangular fluid parcel will be exponentially filamented in time along 
the axis of principal strain (Figure 2).

Filamentation number
Mesoscale eddies rapidly reduce 
the filament width of ventilated 
fluid parcels (see Box A1). The 
extent of this filamentation can be 
approximated from the ratio of the 
timescales over which a given 
region is ventilated (tvent) and 
strained (tstrain), defined as a 
'filamentation number', F. 

Mapping chaotic ventilation pathways
We perform the mapping illustrated schematically in Figure 4 to determine the 
ventilation year of patches of adjacent particles across two density surfaces 
and zoomed in on interesting regions.

Blue ~ small F (short ventilation 
time or laminar flow) ~ large 
filament width ~ adjacent particles 
ventilated at similar location and 
time ~ 'regular' mapping.
Red ~ large F (long ventilation time 
or turbulent flow) ~ small filament 
width ~ adjacent particles ventilated 
at different locations and times ~ 
'chaotic' mapping.
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Defining the side lengths 
as dx(t) and dy(t) parallel 
and perpendicular to the 
axis of principal strain, the 
fluid patch will evolve 
according to
dx(t)=dx(0)exp(t/tstrain),
dy(t)=dy(0)exp(-t/tstrain),
where tstrain is the inverse of 
the strain rate (calculated 
from the horizontal velocity 
gradients). 

Evaluated in a 1/4º numerical ocean circulation model (NEMO), the filamentation number is large 
(>>1) across two density surfaces in the subtropical North Atlantic thermocline (Figure 3). The 
extent of filamentation, approximated by the filamentation number, indicates the chaotic nature of 
pathways by which a region is ventilated. This is illustrated schematically in Figure 4, where we 
consider the ventilation pathways that were followed by adjacent particles on a density surface.
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Figure 3: (a,b) Ventilation timescale (spatial 
median of Lagrangian age for 15,625 

adjacent particles), (c,d) strain timescale 
(temporal median for last 30 years of model 

run) and (e,f) filamentation number on 
potential density surfaces 26 and 27 kg m-3 

in a 1/4 degree ocean circulation model. 
Black regions were unventilated during the 

model run, grey regions were ventilated 
from regions outside the experimental 

domain.

Figure 4: Schematic illustration of laminar (blue ) and chaotic (red) ventilation 
pathways for adjacent particles on a density surface. The particles are adjacent 
at time t and the ith particle left the mixed layer at time ti.

Figure 2: Schematic illustration of the deformation of a 
rectangular fluid parcel at a stagnation point in a flow. The 
fluid parcel is highlighted in orange in its initial location and in 
green after some time t.

Figure 5: Mapping of ventilation year on 26 and 27 at the end of March 2010, evaluated by Lagrangian tracking. 
(a,b) whole density surface, (c,d) 10x10 box at 1 km resolution, (e,f) 2x2 box at 200 m resolution. Black: particle 
unventilated in model run. Grey: particle ventilated outside experimental domain.
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Figure 1: Illustration of the traditional view 
of subtropical ventilation, portraying the 
dominant role of the large-scale gyre 
circulation. From Robbins et al (2000).




