

# Temperature dependency of anaerobic microbial activities in a tropical vs. temperate soil Nikhil R. Chari, Yang Lin, Yuan S. Lin, and Whendee L. Silver

Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720

## Introduction

- reduction are more favorable in lower redox environments.
- quantified.









Gas samples analyzed for  $CO_2$   $CH_4$ ,  $N_2O$  on e.) Agilent GC. Fe measured using ferrozine spectrophotometry. DOC measured on f.) O-I Analytical TICTOC analyzer

### Conclusions

- Anaerobic processes (CH<sub>4</sub> production, Fe reduction) do not follow temperature sensitivity responses exhibited by CO<sub>2</sub> respiration Standardization of CO<sub>2</sub> respiration by microbial biomass increases  $Q_{10}$  values, suggesting temperature sensitivity of soil biogeochemical processes is influenced by both biomass size and rate Variability in temperature sensitivity of  $CH_{4}$  production and Fe reduction may be attributable to C availability, or a temperature threshold for anaerobic microbial activity If PR pattern holds true in other tropical soils, anaerobic conditions may be able to limit loss of SOM and soil GHG production in warmer, wetter climate Acknowledgements Funding: NSF grants EAR-1331841
- and DEB-1457761, Rose Hills Independent Foundation
- Thanks to the members of the Silver Lab at UC Berkeley, El Verde Research Station in Puerto Rico, Luquillo Long Term Ecological Research Program, and the Critical Zone Observatories Network