

Ground-Truthing Lava Flow Propagation Models With Examples From the 2018 Eruption of Kilauea Volcano, HI

Rebecca deGraffenried^{1*}, Julia Hammer¹, Hannah Dietterich², Ryan Perroy³, Matthew Patrick⁴, and Thomas Shea¹

¹Department of Earth Sciences, University of Hawaii at Manoa, ²Alaska Volcano Observatory, USGS, ³Departmental Science, University of Hawaii at Hilo, ⁴Hawaiian Volcano Observatory, USGS

1. Eruption Summary

- ► Began May 3rd, and ended August 6th
- ► 24 eruptive fissures
- ► First documented eruption of andesite on Kilauea
- ► 35.5 km² covered by lava
- ► 716 structures destroyed
- Concurrent lava effusion and summit collapse

Flows of Interest

Early Fissure 8 (EF8)

- ► Active May 6-7
- ► Flowed ~1 km
- ► Erupted cool with ~20 vol. %
- crystals
- ► Basaltic composition (SiO₂ = 51%)

Thermal map of the lower East Rift Zone, captured on May 21,2018. Both flows of interest are visible, with fissure 17 still weakly fountaining. Inset DEM of the Big Island from USGS

Fissure 17 (*F*17)

- ► Major activity May 13-16
- ► Flowed ~2.5 km
- ► Erupted cool with ~25 vol. % crystals
- at vent, ~50 vol. % at terminus
- ► Andesitic composition (SiO₂ = 58%)

2. Research Questions: **Can we accurately predict lava flow propagation?** In how much detail do we need to know l material properties for accurate predictio

Aerial Images - EF8

Aerial imagery was used to quantify macroscopic flow properties, such as flow length, flow width, fissure length, and area of flow, as outlined in the three images. Sources include, from left to right, still shots (corrected for look angle), drone orthomosaics, and thermal orthomosaics

5. Microprobe Data

- Major element chemistry of glass measured
- Glass chemistry used to calculate fluid viscosity via Giordano et al. (2008) BSE images captured for
- crystal content and texture Images analyzed using
- NIH ImageJ Crystals incorporated
- into viscosity using the model of Costa et al. (2009) and fit parameters
- of Cimarelli et al. (2011) Crystals incorporated into yield strength using the model of Pinkerton and Stevenson (1992)

Example back-scattered electron (BSE) images of crystals from early fissure 8 (top) and fissure 17 (bottom). Phases are labeled as V=vesicle, C=crystal, G=glass

ava	Fissure	Vent Crystal Percent	Terminus Crystal Percent	Average Crystal Percent	Average Aspect Ratio
	EF8	25	25	25	3.3
ons?	F17	27	50	39	2.45

1	Symbol	Variable	Units	Data Source
15	L	length	m	Measured from imagery
Allows variables to change	g	gravitational acceleration	m s ⁻²	
continuously	β	slope	degrees	Measured from DEM
$L = C_1 \sum_{i=1}^{n} \left(\frac{V_i^2 \rho g \sin \beta_i t_i}{m^2} \right)^{1/3}$	η*	viscosity	Pa s	Giordano et al. (2008), Costa et al. (2009)
$-\tau - \tau - (\eta_i W_i^2)$	t	time	S	
	W	flow width	m	Measured from imagery
$V_i \rho q \sin \beta_i$	ρ	lava density	kg m ⁻³	Bottinga and Weill (1970)
$L = C_2 \sum_{i=1}^{n} \left(\frac{1 \sigma_{0i} V_i}{\sigma_{0i} W_i} \right)$	q	time-averaged lava flux	$m^3 m^{-1} s^{-1}$	Measured from imagery
	σ_0^*	fluid yield strength	Pa	Pinkerton and Stevenson (1992)
1/	$\sigma_{\rm c}$	crust yield strength	Pa	Kerr et al. (2006)
$I = C_{\tau} \sum_{i=1}^{n} \left(\frac{V_{i}^{2} \rho g \sin \beta_{i}}{V_{i}} \right)^{\frac{1}{2}}$	κ	thermal diffusivity	$m^2 s^{-1}$	
$L = C_3 \Delta_i = 1 \left(\frac{W_i^2 \sigma_{ci} \sqrt{\kappa t}}{W_i^2 \sigma_{ci} \sqrt{\kappa t}} \right)$	V _i	incremental volume	$m^3 s^{-1}$	Measured from imagery
t predicts the shortest length	*propert	ies are influenced by	crystals	

4. Remotely Measured Data

- Flow volume estimated from final flow outline and field thickness measurements
- Raw mass flux estimated from flow volume min/max estimates of flow emplacement duration
- Flux is either normalized to fissure length (q) or flow width (V/W), depending on model
- Ground slope measured from 10 meter DEM

Fissure	High q (m ² /s)	Low q (m ² /s)	High V _i (m ³ /s)	Low V _i (m ³ /s)
EF8	0.0636	0.0265	7.43	3.09
F17	0.0510	0.0117	25.05	5.77

