Writing an Effective Plain Language Summary

ADCTDACT

DEATNELANCHACE CUMMADY

A Plain Language Summary (PLS) is a way to summarize a scientific study and its results in terms that are accessible to people outside of a specific scientific circle. The example below, taken from a research article published in *AGU Advances*, is broken down to show the four key elements that make an effective PLS and how the language from an Abstract can be modified for a Plain Language Summary.

Example from Planetary Sciences

	ABSTRACT		I LAIN LANGOAGE SOMMANI
Topic overview	Although there is little doubt that rivers once flowed on Mars' surface, how sustained and frequent their flows were remains enigmatic. Under- standing the hydrology of early Mars, nonetheless, is a prerequisite to resolv- ing the planet's climate history and the astrobiological potential of various ancient putative ecosystems.	 What does a non-expert reader need to know about the topic to understand your paper? Interesting question to engage the reader Explains importance of this topic Accessible to a non-expert 	Rivers once flowed on Mars, but how often, and for how long? An- swering these questions will in- crease our understanding of Mars' habitability at a time when life was already evolving on Earth.
Paper overview	In 2021, NASA's Perseverance rover will attempt to land near ancient flu- viodeltaic deposits in Jezero crater. Deltas offer enhanced organic-matter burial and preservation on Earth but translating this notion to early Martian environments remains speculative in the absence of information on flow intermittency and sedimentation rates. Here we develop a new model to infer the lateral migration rate of Martian river meanders, which, combined with orbiter-based observations of the flu- viodeltaic deposits at Jezero crater, allows us to determine a minimum timescale for the formation of its delta. We then independently constrain the total duration of delta formation, including dry spells.	 What did you set out to investigate? Explains what the study aims to do Describes where the data will come from 	NASA's Perseverance rover will land by the remnants of an ancient river delta in Jezero cra- ter. Here we develop a new model to calculate the pace of shifting Martian rivers, which, when applied to orbital observations of the Jeze- ro delta, allows us to determine a minimum duration for delta forma- tion.
Paper findings	Our best estimates suggest that delta formation spanned ~19–37 years over a total duration of ~380,000 years, i.e., that rivers flowed for a minimum ~1 sol/15–30 Martian years and conceiv- ably more frequently, but uncertainties on total duration are large. Despite a possibly arid climate, predicted sedi- mentation rates are high, suggesting a rapid burial of putative organics in distal deposits.	 What was the most significant result or conclusion in your paper? Gives a general picture of results Simple description of what can be inferred from the results Minimal technical terms or scientific jargon 	Combined with an independent estimate for the total duration of delta formation (including dry spells), our results suggest that the delta took a few decades to form over a total timespan of, most likely, hun- dreds of thousands of years. This result suggests that Mars was likely arid at the time, with rivers flow- ing for at least 1 Martian day every 15–30 Martian years, and possibly more often. Nonetheless, we predict that sediments would have been buried quickly in the delta, favoring the long-term preservation of possi- ble organic matter.
Key takeaways	Altogether, our results support Jeze- ro crater's potential as a prime target to look for ancient Martian life and acquire samples to return to Earth. Any discrepancies between our predictions of the deposits' grain-to-bedform- scale architecture and future rover ob- servations will shed critical light onto Mars' early surface environments.	 Why should a reader care about your findings? Explains the significance of the results 	Altogether, our results confirm that Jezero crater is a prime location to understand Mars' early climate, look for traces of ancient Martian life, and return samples from for further analysis on Earth.

Lapôtre, M. G. A., & lelpi, A. (2020). The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Advances, 1, e2019AV000141. https://doi.org/10.1029/2019AV000141_

More resources about Plain Language Summaries available at <u>agu.org/Publish-with-AGU/Publish/Author-Resources/Plain-Language-Summary</u>